ESSENTIAL PROBLEMS FOR SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED ON UNIT DISK

Kassim A. Jassim

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq *Corresponding Author: kasimmathphd@gmail.com

Received 08-12-2020, Accepted 16-03-2021, published 14-04-2021.

DOI: 10.52113/2/08.01.2021/67-73

Abstract: In this paper, we investigate subordinate problems for subclass related to known functions convoluted with Frasin operator. Therefore, major results and special cases are obtained.

Keyword: analytic function, Hadamard product, univalent function, Differential subordination.

INTRODUCTION

Let \mathcal{H} denoted the class of functions of the form $f(w) = \sum_{k=2}^{\infty} a_k w^k$, $a_k \ge \mathbf{0}$ (1) which are analytic in the open unit disk $U = \{w; w \in \mathbb{C} : |w| < 1\}$. For the functions f and g in \mathcal{H} , we say that f is subordinate to g in U, and write f < g if there exists a function k(w) in U such that |k(w)| < 1 and k(0) = 0 with f(w) = g(k(w)) in U. If f is univalent in U, then f < g is equivalent to f(0) = g(0) and $f(U) \subset g(U)$, see[5]

Let $f, g \in \mathcal{H}$ be given by

 $g(w) = \sum_{k=2}^{\infty} b_k w^k b_k \ge \mathbf{0}$, for all $z \in U$, then the Hadamard product (or convolution)

$$(f * g)(w) = w + \sum_{k=2}^{\infty} a_k b_k w^k.$$

For $m \in \mathbb{N}$, λ , $j \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $0 \le b \le 1$, $f \in \mathcal{H}$, Frasin operator [3].

 $D_{m,b}^{\lambda} f(z) \colon \mathcal{H} \to \mathcal{H}$ is defined as follows $D_{m,b}^{\lambda} f(w) = w + \sum_{k=2}^{\infty} [1 + (k - 1)^{k+1}]^{k+1}$

1)
$$\sum_{j=1}^{m} {m \choose j} (-1)^{j+1} b^{j}]^{\lambda} a_{k} w^{k}$$
 (2)

One can esily proved that

$$C_j^m(b) \left(D_{m,b}^{\lambda} f(w) \right)' = D_{m,b}^{\lambda+1}(a,c) f(w) - (1 - C_j^m(b)) D_{m,b}^{\lambda} f(w)$$
where

$$C_j^m(b) = \sum_{j=1}^m {m \choose j} (-1)^{j+1} b^j.$$

To get our outcomes, we must recall a necessary known concepts.

<u>Definition(1) [4]:</u> Let Ω and Δ be any sets in \mathbb{C} , let δ be an analytic function in the open unit disk U with $\delta(0)=a$ and let $\psi(r,s,t;w): \mathbb{C}^3 \times U \to \mathbb{C}$.

The core of this monograph manages speculation of the accompanying ramifications :

$$\{\psi(\delta(w), w\delta'(w), w^2\delta''(w); w) : w \in U\} \subset \Omega \Longrightarrow \delta(U) \subset \Delta. \quad (4)$$

If Δ is a simply connected domain containing the point a and $\Delta \neq \mathbb{C}$, then there is a conformal mapping σ of U onto Δ such that $\sigma(0)=a$. In this case, (4) can be written as:

$$\{\psi(\delta(w), z\delta'(w), w^2\delta''(w); w) : w \in U\} \subset \Omega \Longrightarrow \delta(U) \subset \sigma(U).$$

If Ω is also a simply connected domain and $\Omega \neq \mathbb{C}$, then there is a conformal mapping h of U onto Ω such that $h(0) = \psi(a,0,0;0)$. Also, if the function $\psi(\delta(w), w\delta'(w), w^2\delta''(w); w)$ is analytic in U, then it;s can be written as:

$$\psi(\delta(w), w\delta'(w), w^2\delta''(w); w) < h(z) \Longrightarrow \delta(z)
< \sigma(z).$$
(5)

<u>Definition(2) [4]:</u> Let $\psi: \mathbb{C}^3 \times U \to \mathbb{C}$ and let h be univalent in U. If δ is analytic in U and satisfies the second –order differential subordination

$$\psi(\delta(w), w\delta'(w), w^2\delta''(w); w) < h(w), \quad (6)$$

then δ is called a solution of the differential subordination . The univalent function σ is called a dominant of the solutions of the differential subordination, relation (6) simply dominant if $\delta < \sigma$ for all δ satisfying (6).

A dominant $\check{\sigma}$ is said to be best dominant if it satisfies $\check{\sigma} \prec \sigma$ for all dominants σ of (6).

<u>Definition(3) [4]</u>: Denote by Q the set of all functions σ that are injective and analytic on $\overline{U}\setminus E(\sigma)$, where

$$E(\sigma) = \{ \xi \in \partial U : \lim_{z \to \xi} \sigma(z) = \infty \}, \qquad (7)$$

and are such that $\sigma'(\xi)\neq 0$ for $\xi \in \partial U \setminus E(\sigma)$. Further, let the subclass of Q for which $\sigma(0) = a$ be denoted by Q(a), $Q(0) \equiv Q_0$ and $Q(1) \equiv Q_1$, where $Q_1 = \{ q \in Q : q(0) = \}$.

<u>Definition(4) [4]:</u> Let Ω be a set in \mathbb{C} , $\sigma \in Q$ and n be positive integer. The class of admissible function $\Psi_n[\Omega,\sigma]$ consist of those functions

 $\psi: \mathbb{C}^3 \times U \times \overline{U} \to \mathbb{C}$ which is satisfy the admissibility condition

$$\psi(r, s, t; w, \xi) \notin \Omega.$$

Whenever $r = \sigma(\xi)$, $s = k\xi\sigma'(\xi)$ and

$$\operatorname{Re}\left\{\frac{t}{s}+1\right\} \ge k \operatorname{Re}\left\{\frac{\xi \sigma''(\xi)}{\sigma'(\xi)}+1\right\}, (8)$$

 $w \in U, \xi \in \partial U \setminus E(\sigma), \xi \in \overline{U}$, and $k \ge n$. In particular case $\Psi_1[\Omega, \sigma] = \Psi[\Omega, \sigma]$.

<u>Definition(5) [4]:</u> Let Ω be a set in \mathbb{C} , $\sigma \in \mu[a,n]$ and n be positive integer. The class of admissible function $\Psi'_n[\Omega,\sigma]$ consist of those functions

 $\psi: \mathbb{C}^3 \times \overline{U} \times \overline{U} \to \mathbb{C}$ that satisfies the admissibility condition

$$\psi(r, s, t; \xi, \zeta) \notin \Omega$$
.

Whenever $r = \sigma(w)$, $s = \left(\frac{1}{m}\right) w \xi \sigma'(w)$ and

$$\operatorname{Re}\left\{\frac{t}{s}+1\right\} \ge \left(\frac{1}{m}\right) \operatorname{Re}\left\{\frac{w\sigma''(w)}{\sigma'(w)}+1\right\}, \quad (9)$$

 $w \in U, \xi \in \partial U, \zeta \in \overline{U}$, and $m \ge n \ge 1$. In particular case for n=1

$$\Psi_{1}^{'}[\Omega,\sigma] = \Psi^{'}[\Omega,\sigma] \tag{10}.$$

Similar study is carried out by several authors, like Billing [1] Dihnggong and Liu[2], Oros [5,6], and Lupas [7,8]. Many authors studied different classes with essential problems such as Sarah A. AL-Ameedee ,Waggas Galib Atshan &Faez Ali AL-Maamori[9], Serkan Çakmak, Sibel Yalcçın, Şahsene Altınkaya[10], Waggas Galib Atshan and, Haneen Zaghir [11], Odeh Z. and Kassim A. Jassim[12], Odeh Z. and Kassim A. Jassim[13] and Odeh Z.and kassim a. Jassim[14]

<u>Definition(6)</u>: Let Ω be a set in \mathbb{C} and $\sigma \in Q_0 \cap \mu[0, \delta]$. The class of admissible functions $\Phi_k[\Omega, \sigma]$ consists of those functions $\emptyset: \mathbb{C}^3 \times U \to \mathbb{C}$ that satisfy the admissibility condition:

$$\emptyset(u, v, w; w) \notin \Omega,$$
 (11) whenever

$$u = \sigma(\zeta)$$
 , $v = kC_j^m(T)\zeta\sigma'(\zeta)$
 $+ \left(1 - C_j^m(T)\right)\sigma(\zeta)$, $(\lambda > -1)$,

and

$$\operatorname{Re} \left\{ \frac{w - \left(C_{j}^{m}(b)^{2} - 2C_{j}^{m}(b) + 1 \right) u - \left(2 - C_{j}^{m}(b) \right) C_{j}^{m}(b) v}{C_{j}^{m}(b)^{2} \left(\frac{v - \left(1 - C_{j}^{m}(b) \right) u}{C_{j}^{m}(b)} \right)} + 1 \right\} \geq k \operatorname{Re} \left\{ \frac{\zeta \sigma''(\zeta)}{\sigma'(\zeta)} + 1 \right\} \quad (12)$$

 $w \in U, \zeta \in \partial U \setminus E(\sigma)$, and $k \ge 1$.

Theorem(1): Let $\emptyset \in \Phi_k[\Omega, \sigma]$. If $f \in \mathcal{H}$ satisfies

$$\{\emptyset(D_{m,b}^{\lambda}f(w),D_{m,b}^{\lambda+1}f(w),D_{m,b}^{\lambda+2}f(w);w)\}\subset\Omega$$
,
$$(13)$$

then $D_{m,b}^{\lambda}f(w) < \sigma(w)$.

Proof: By using (2) and (3), we get the equivalent relation $D_{m,b}^{\lambda+1} f(w) =$

$$C_j^m(b)w\left(D_{m,b}^{\lambda}f(w)\right)' + (1 - C_i^m(b))D_{m,b}^{\lambda}f(w). \tag{14}$$

Assume that

$$\mathcal{F}(w) = D_{m,b}^{\lambda} f(w). \tag{15}$$

Then

$$D_{m,b}^{\lambda+1}f(w) = C_j^m(b)wF'(w) + (1 - C_j^m(b))F(w) (16)$$

Therefore,

$$D_{m,b}^{\lambda+2}f(w) = C_j^m(b)w \left(D_{m,b}^{\lambda+1}f(w)\right)' + (1 - C_j^m(b))D_{m,b}^{\lambda+1}f(w)$$
 (17)

then we have by (13),

$$(D_{m,b}^{\lambda+1}f(w))' = C_j^m(b)wF''(w) + C_j^m(b)F'(w) + (1 - C_i^m(b))F'(w).$$
(18)

So.

$$\begin{split} D_{m,b}^{\lambda+2}f(w) &= C_j^m(b)^2 w^2 F''(w) \\ &+ \left(2 - C_j^m(b)\right) W C_j^m(b) F'(w) \\ &+ \left(C_j^m(b)^2 - 2C_j^m(b) + 1\right) F(w) (19) \end{split}$$

Let
$$u = r$$
, $v = C_j^m(b)s + (1 - C_j^m(b))r$
 $w = C_j^m(b)^2 t + (2 - C_j^m(b)) C_j^m(b)s$
 $+ (C_j^m(b)^2 - 2C_j^m(b) + 1)r$

Assume that

$$\psi(r, s, t; w) = \emptyset(u, v, w; \omega, \xi)
= \emptyset\left(r, C_j^m(b)s\right)
+ \left(1 - C_j^m(b)\right) r, C_j^m(b)^2 t
+ \left(2 - C_j^m(b)\right) C_j^m(b) s
+ \left(C_i^m(b)^2 - 2C_i^m(b) + 1\right) r; w.$$

By using (15) and (19), we obtain $\psi(\mathcal{F}(w), w\mathcal{F}'(w), w^2\mathcal{F}''(w); w)$ $= \emptyset(D_{m,T}^{\lambda}f(w), D_{m,T}^{\lambda+1}f(w), D_{m,T}^{\lambda+2}f(w); w).$ (20) Therefore, by making use (14), we get

 $\psi(\mathcal{F}(w), w\mathcal{F}'(w), z^2\mathcal{F}''(w); w) \in \Omega.$ (21)
Also, by using

$$w = C_j^m(b)^2 t + \left(2 - C_j^m(b)\right) C_j^m(b) s + \left(C_j^m(b)^2 - 2C_j^m(b) + 1\right) r$$

and by simple calculations, we get

$$\frac{w - (C_j^m(b)^2 - 2C_j^m(b) + 1)u - (2 - C_j^m(b))C_j^m(b)v}{(1 + 1)u - (2 - C_j^m(b))C_j^m(b)v}$$

$$C_j^m(b)^2 \left(\frac{v - \left(1 - C_j^m(b)\right)u}{C_j^m(b)} \right)$$

$$+1 = \frac{t}{s} + 1 \tag{22}$$

and the admissibility condition for $\emptyset \in \Phi_k[\Omega, \sigma]$ is equivalent to the admissibility condition for ψ then $\psi \in \Psi_n[\Omega, \sigma]$ and therefore $\mathcal{F}(w) < \sigma(w)$. Hence, we get $D_{m,T}^{\lambda} f(w) < \sigma(w)$.

If we assume that $\Omega \neq \mathbb{C}$ is a simply connected domain. So, $\Omega = h(U)$, for some conformal mapping h of U onto Ω . Assume the class is written as $\Phi_k[h,\sigma]$. Therefore, we conclude immediately the following theorem.

Theorem (2): Let $\emptyset \in \Phi_k[h, \sigma]$. If $f \in \mathcal{H}$ satisfies

$$\emptyset \left(D_{m,T}^{\lambda} f(w), D_{m,T}^{\lambda+1} f(w), D_{m,T}^{\lambda+2} f(w); w \right) < h(w), \quad (23)$$

then
$$D_{m,T}^{\lambda} f(w) < \sigma(w)$$
.

The next result is an extension of Theorem (1) to the case where the behavior of σ on ∂U is unknown.

Corollary(1): Let $\Omega \subset \mathbb{C}$, σ be univalent in U and $\sigma(0)=0$. Let $\emptyset \in \Phi_k[\Omega, \sigma_\rho]$ for some $\rho \in (0,1)$, where $\sigma_0(w) = \sigma(\rho w)$. If $f \in \mathcal{H}$ satisfies

 $\emptyset(D_{m,b}^{\lambda}f(w),D_{m,b}^{\lambda+1}f(w),D_{m,b}^{\lambda+2}f(w);w) \in \Omega,$ (24)

then $D_{m,T}^{\lambda}f(w) < \sigma(w)$.

Theorem (3): Let h and σ be univalent in U, with $\sigma(0)=0$, $\sigma_{\rho}(w)=\sigma(\rho w)$ and $h_{\rho}(\omega)=h(\rho\omega)$. Let $\emptyset: \mathbb{C}^3\times \mathbb{U}\to \mathbb{C}$ satisfy one of the following conditions:

(1) $\emptyset \in \Phi_k[\Omega, \sigma_\rho]$ for some $\rho \in (0,1)$ or

(2) there exists $\rho_0 \in (0,1)$ such that $\emptyset \in \Phi_k[h_\rho, \sigma_\rho]$ for all $\rho \in (\rho_0, 1)$.

If $f \in \mathcal{H}$ satisfies (23), then

$$D_{m,h}^{\lambda} f(w) \prec \sigma(w)$$
.

Proof: Case (1): By using Theorem (1), we get $D_{m,b}^{\lambda}f(w) < \sigma_{\rho}$. Since $\sigma_{\rho}(w) < \sigma(w)$ then we get the result.

Case (2): Assume that $\mathcal{F}(w) = D_{m,b}^{\lambda} f(w)$ and $F_0(w) = F(\rho w)$. So,

$$\emptyset(\mathcal{F}_{\rho}(w), z\mathcal{F}'_{\rho}(w), w^{2}\mathcal{F}''_{\rho}(w); \rho w)
= \emptyset(\mathcal{F}(\rho w), \rho w\mathcal{F}'(\rho w), \rho^{2}w^{2}\mathcal{F}''(\rho w); \rho w)
\in h_{\rho}(U).$$

By using Theorem (1) and associated with $\emptyset(\mathcal{F}(w), w\mathcal{F}'(w), w^2\mathcal{F}''(w); w(w))$

 $\in \Omega$, where w is any function mapping from U onto U, with $w(w) = \rho w$, we obtain $\mathcal{F}_{\rho}(w) < \sigma_{\rho}(w)$ for $\rho \in (\rho_0, 1)$. By letting $\rho \to 1^-$, we get $D_{m,h}^{\lambda} f(w) < \sigma(w)$.

The next theorem gives the best dominant of the differential subordination (23).

Theorem (4): Let h be univalent in U and let \emptyset : $\mathbb{C}^3 \times U \rightarrow \mathbb{C}$. Suppose that the differential equation

$$\emptyset(\sigma(w), \sigma'(w), w^2 \sigma''(w); w) = h(w)$$
(25)

has a solution σ with $\sigma(0)=0$ and satisfy one of the following conditions:

- (1) $\sigma \in Q_0$ and $\emptyset \in \Phi_k[h, \sigma]$.
- (2) σ is univalent in U and $\emptyset \in \Phi_{\mathbf{k}}[h, \sigma_{\rho}]$ for some $\rho \in (0,1)$.
- (3) σ is univalent in U and there exists $\rho_0 \in (0,1)$ such that $\emptyset \in \Phi_k[h_\rho, \sigma_\rho]$, for all $\rho \in (\rho_0, 1)$.

If $f \in \mathcal{H}$ satisfies (23),then $D_{m,b}^{\lambda}f(w) < q(w)$ and σ is the best dominant.

Proof: By using Theorem (2) and Theorem (3), we get that σ is a dominant of (23). Since σ satisfies (25), it is also a solution of (23) and therefore σ will be dominant by all dominants of (23). Hence, σ is the best dominant of (23).

<u>**Definition(7):**</u> Let Ω be a set in \mathbb{C} and $\sigma \in Q_0 \cap \mu_0$. The class of admissible functions $\Phi_{k,1}[\Omega, \sigma]$ consists of those functions $\emptyset: \mathbb{C}^3 \times U \to \mathbb{C}$ that satisfy the admissibility condition:

$$\emptyset(u,v,w;w) \notin \Omega$$
,

whenever

$$u = \sigma(\zeta)$$
 , v
= $kC_j^m(b)\zeta\sigma'(\zeta)$
+ $\sigma(z)$, $(\lambda > -1)$.

and

$$\mathcal{R}e\left\{\frac{(w-u)}{vC_{j}^{m}(b)^{2}} - \frac{\left(C_{j}^{m}(b)+2\right)}{C_{j}^{m}(b)} + 1\right\} \\ \geq kRe\left\{\frac{\zeta\sigma''(\zeta)}{\sigma'(\zeta)} + 1\right\} \quad (26)$$

<u>Theorem(5):</u> Let $\emptyset \in \Phi_{k,1}[\Omega, \sigma]$. If $f \in \mathcal{H}$ satisfies

$$\left\{\emptyset\left(\frac{D_{m,b}^{\lambda}f(w)}{w},\frac{D_{m,b}^{\lambda+1}f(w)}{w},\frac{D_{m,b}^{\lambda+2}f(w)}{w};w\right)\right\} \subset \Omega,$$

$$(27)$$
then
$$\frac{D_{m,b}^{\lambda}f(w)}{w} \prec \sigma(w).$$

Proof: Let the analytic function \mathcal{F} in U be defined by

$$\mathcal{F}(w) = \frac{D_{m,T}^{\lambda} f(w)}{w} \tag{28}.$$

Then by (13) and (28), we get

$$D_{m,b}^{\lambda+1}f(w) = C_{j}^{m}(b)w \left(D_{m,b}^{\lambda}f(w)\right)' + (1$$

$$-C_{j}^{m}(b)D_{m,b}^{\lambda}f(w)$$

$$= C_{j}^{m}(b)w(wF(w))' + (1$$

$$-C_{j}^{m}(b))wF(w)$$

$$= C_{j}^{m}(b)w \left(wF'(w) + F(w)\right) + (1$$

$$-C_{j}^{m}(b)wF(w)$$

$$= C_j^m(b)w^2F'(w) + C_j^m(b)wF(w) + wF(w) - C_j^m(b)wF(w)$$
This implies that
$$\frac{D_{m,T}^{\lambda+1}f(w)}{w} = C_j^m(b)(wF'(w) + F(w)) + \left(1 - C_j^m(b)\right)F(w) + \left(1 - C_j^m(b)\right)F(w) + \left(1 - C_j^m(b)F(w) + F(w) - C_j^m(b)F(w)\right) + \left(1 - C_j^m(b)wF'(w) + F(w) - C_j^m(b)W_j^{\lambda+1}f(w)\right)' + \left(1 - C_j^m(b)D_{m,b}^{\lambda+1}f(w)\right)' + \left(1 - C_j^m(b)D_{m,b}^{\lambda+1}f(w)\right) + \left(1 - C_j^m(b)D_{m,b}^{\lambda+1}f(w)\right)' + \left(1 - C_j^m(b)W_j^{\lambda+1}f(w)\right)' + \left(1 -$$

Then

$$\frac{D_{m,b}^{\lambda+2}f(w)}{w} = C_j^m(b)^2 w^2 F''(w)
+ F'(w) 2w C_j^m(b)^2
+ w F'(w) C_j^m(b)
+ F(w) C_j^m(b)
+ (C_j^m(b) w F'(w) + F(w)
- C_j^m(b)^2(b) w F'(w)
- F(w) C_i^m(b) (30)$$

So, let define the transformation from \mathbb{C}^3 to \mathbb{C} by U=r, $v=C_j^m(b)s+r$ $w=C_j^m(b)^2t+2sC_j^m(b)^2+sC_j^m(b)+rC_j^m(b)+C_j^m(b)s+r-C_j^m(b)^2(b)s-rC_j^m(b)$ $=C_j^m(b)^2t+sC_j^m(b)^2+2sC_j^m(b)+r$ $=C_j^m(b)^2t+sC_j^m(b)(C_j^m(b)+2)+r$ and by simple calculations ,we get $\frac{(w-u)}{vC_i^m(b)^2}-\frac{\left(C_j^m(b)+2\right)}{C_i^m(b)}+1=\frac{t}{s}+1$

Theorem (6): Let $\emptyset \in \Phi_k[h,q]$. If $f \in \mathcal{H}$ satisfies

$$\emptyset\left(\frac{D_{m,b}^{\lambda}f(w)}{w}, \frac{D_{m,b}^{\lambda+1}f(w)}{w}, \frac{D_{m,b}^{\lambda+2}f(w)}{w}; w\right) < h(w), \qquad (31)$$
then
$$\frac{D_{m,b}^{\lambda}f(w)}{w} < \sigma(w).$$

The next result is an extension of Theorem (1) to the case where the behavior of σ on ∂U is unknown.

Corollary(2): Let $\Omega \subset \mathbb{C}$, σ be univalent in U and $\sigma(0)=0$. Let $\emptyset \in \Phi_k[\Omega, \sigma_\rho]$ for some $\rho \in (0,1)$, where $\sigma_\rho(w) = \sigma(\rho w)$. If $f \in \mathcal{H}$ satisfies

$$\emptyset\left(\frac{D_{m,b}^{\lambda}f(w)}{w}, \frac{D_{m,b}^{\lambda+1}f(w)}{w}, \frac{D_{m,b}^{\lambda+2}f(w)}{w}; w\right) \in \Omega, (32)$$
then $\frac{D_{m,b}^{\lambda}f(w)}{w} \prec \sigma(w)$.

 $\underline{\mathbf{Proof}}$: The proof is completed by using Theorem(1).

Theorem (7): Let h and σ be univalent in U, with $\sigma(0)=0$, $\sigma_{\rho}(w)=\sigma(\rho w)$ and $h_{\rho}(\omega)=$

 $h(\rho\omega)$. Let $\emptyset: \mathbb{C}^3 \times \mathbb{U} \to \mathbb{C}$ satisfy one of the following conditions:

(1) $\emptyset \in \Phi_k[\Omega, \sigma_\rho]$ for some $\rho \in (0,1)$ or

(2) there exists $\rho_0 \in (0,1)$ such that $\emptyset \in \Phi_{\mathbf{k}}[h_{\rho}, \sigma_{\rho}]$ for all $\rho \in (\rho_0, 1)$.

If $f \in \mathcal{H}$ satisfies (23), then

$$\frac{D_{m,b}^{\lambda}f(w)}{w} < \sigma(w).$$

<u>Proof:</u> Case (1): By using Theorem (1), we get $D_{m,T}^{\lambda} f(w) < \sigma_{\rho}$. Since $\sigma_{\rho}(w) < q(w)$ then we get the result.

Case (2): Assume that $\mathcal{F}(w) = D_{m,T}^{\lambda} f(w)$ and $\mathcal{F}_{\rho}(w) = \mathcal{F}(\rho w)$. So,

 $\emptyset(\mathcal{F}_0(w), w\mathcal{F}_0'(w), w^2\mathcal{F}_0''(w); \rho w)$

 $= \emptyset(\mathcal{F}(\rho w), \rho w \mathcal{F}'(\rho w), \rho^2 w^2 \mathcal{F}''(\rho w); \rho w)$ $\in h_{\rho}(U).$

By using Theorem (1) and associated with $\emptyset(\mathcal{F}(w), w\mathcal{F}'(w), w^2\mathcal{F}''(w); w(w))$

 $\in \Omega$, where w is any function mapping from U onto U, with $w(w) = \rho w$, we obtain $\mathcal{F}_{\rho}(w) < \sigma_{\rho}(w)$ for $\rho \in (\rho_0, 1)$. By letting $\rho \to 1^-$, we

get
$$\frac{D_{m,b}^{\lambda}f(w)}{w} < \sigma(w)$$
.

The next theorem gives the best dominant of the differential subordination (23).

Theorem (8): Let *h* be univalent in *U* and let \emptyset : $\mathbb{C}^3 \times U \rightarrow \mathbb{C}$. Suppose that the differential equation

 $\emptyset(\sigma(w), \sigma'(w), w^2\sigma''(w); w) = h(w)$ (33) has a solution σ with $\sigma(0)=0$ and satisfy one of the following conditions:

- (1) $\sigma \in Q_0$ and $\emptyset \in \Phi_k[h, \sigma]$.
- (2) σ is univalent in U and $\emptyset \in \Phi_{\mathbf{k}}[h, \sigma_{\rho}]$ for some $\rho \in (0,1)$.
- (3) σ is univalent in U and there exists $\rho_0 \in (0,1)$ such that $\emptyset \in \Phi_k[h_\rho, \sigma_\rho]$,

for all $\rho \in (\rho_0, 1)$. If $f \in \mathcal{H}$ satisfies (23), then $\frac{D_{m,b}^{\lambda}f(w)}{w} \prec \sigma(w)$ and σ is the best dominant.

REFERENCE

1. Billing S.S., An application of differential subordination for starlikness of analytic functions, Int. J. Open problems complex analysis, 2(3)(2010), 221-229.

- 2. Dinggong Y. and J. L. Liu, On a class of analytic functions involving Rusceweyh derivative, Bull, Korean Math. Soc., 39(1)(2002), 123-131.
- 3. Frasin B., A new differential operator of analytic functions involving binomial series, Bol.Soc. Paran. Mat. 38(5) (2020), 205-213.
- 4. Miller S.S. and P.T.Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Text books in pure and Applied Mathematics Vol. 225, Marcel Dekker, New York and Basel, (2000).
- 5. Oros G.I., Strong differential superordination. Acta Univ. Apulensis, Mat.-Inform. 19(2009), 101-106.
- 6. Oros G.I., Strong differential subordination. Turk. J. Math. 33, (2009) 249-257.
- 7. Lapus A.A., Certain differential subordinations using a generalized salagean operator and Ruscheweyh operator, Internationl Journal of Fractional Calculus and applied Analysis, 13(4)(2010), 355-360.
- 8. Lapus A.A., A note on differential subordinations using Salagean and Ruscheweyhoperators, Romi J., 6(1)(2010), 4 pages.
- 9. Sarah A. AL-Ameedee ,Waggas Galib Atshan &Faez Ali AL-Maamori, On sandwich results of univalent functions defined by a linear operator, Journal of Interdisciplinary Mathematics 23(4),(2020):803-809.
- Sibel Yalcçın, Şahsene Altınkaya, On a subclass of harmonic univalent functions based on subordination, Journal Theory and Applications of Mathematics & Computer Science, 7(2), (2017), 51–62.
 - 11. Waggas Galib Atshan and, Haneen Zaghir Hassan, Differential Sandwich Results For Univalent Functions, AL-Qadisiyah Journal Of Pure Science, 25, (1), (2020) 55–59.
 - 12. Odeh Z. and Kassim A. Jassim,On the class of multivalent analytic functions defined by differential operator for derivative of first

order, Journal of Al-Qadisiyah for Computer Science and Mathematics, , 11(1) (2019), 80-86.

- 13. Odeh Z. and Kasim A. Jassim, Subordination for certain analytic multivalent functions defined by using differential operator, IOP Conf. Series: Journal of Physics: Conf. Series1234 (2019) 012110.
- 14. Odeh Z.and kassim a. Jassim, Multivalent harmonic starlike functions of complex order defined by a linear, operator, Sci.int.(lahore), 31(1), (2019), 11-18.